
CIVIL-309: URBAN THERMODYNAMICS

Assist. Prof.
Dolaana Khovalyg

Lecture 01:

Course overview.
Urban characteristics and the UHI effect.

CONTENT:

- Introduction to the course
 - Content, schedule, grading
 - Group project overview
- Urban characteristics
 - Overview of properties
 - Local climate zones (LCZ)
 - Street canyon aspect ratio (λ_s)
 - Sky view factor (ψ_{sky})
- Urban Heat Island (UHI) effect
 - Energy balance for cities, anthropogenic heat
 - UHI definition, types, magnitude, dynamics
 - Consequences

EPFL Course Information: People

Dolaana KHOVALYG, Assist. Professor

dolaana.khovalyg@epfl.ch

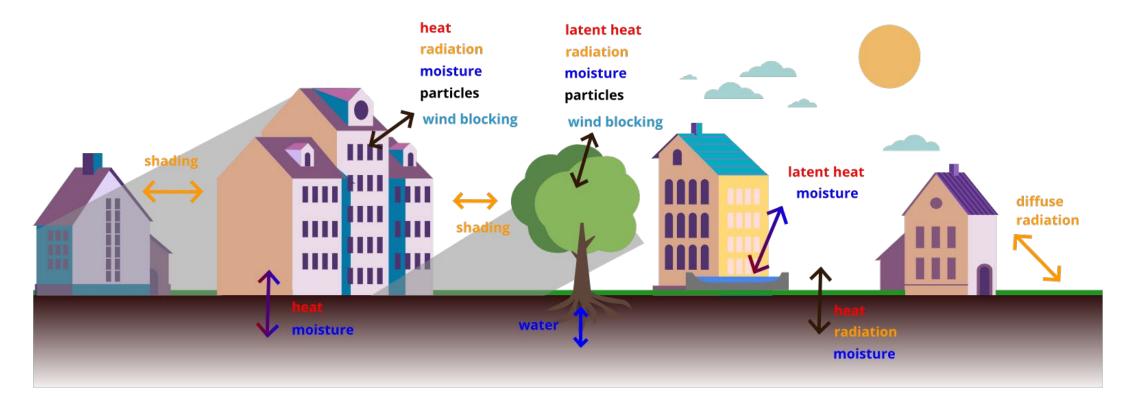
Head of the Laboratory of Integrated Comfort Engineering (ICE)

Lab website: https://www.epfl.ch/labs/ice/

Research focus: energy reduction of the thermal conditioning in buildings, building physics, well-being and comfort of building occupants

Teaching activities: CIVIL-309 "*Urban Thermodynamics*", ENG-445 "*Building Energetics*", CIVIL-450 "*Thermodynamics of Comfort in Buildings*"

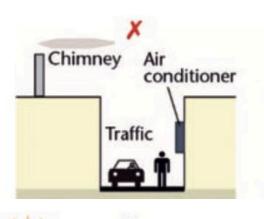
Kun LYU, Postdoctoral Researcher

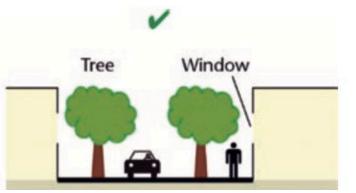

kun.lyu@epfl.ch

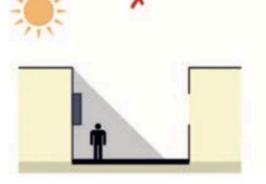
Research focus: Outdoor thermal comfort, biophilic design, urban heat island effect mitigation

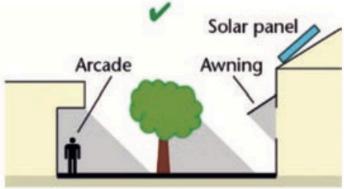
Teaching activities: CIVIL-309 "Urban Thermodynamics"

Course Objectives

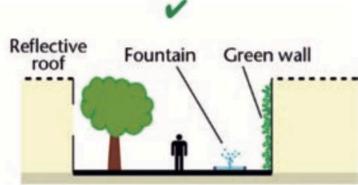

- Learn the effect of urban elements on urban climate and outdoor comfort, analysis of urban neighborhoods from a thermodynamics perspective
- Identify the magnitude of heat exchange and type of the exchange between different urban elements such as buildings, vegetation, water bodies, ground, and the surrounding environment
- Intro to the Urban Heat Island (UHI) effect in cities and mitigation strategies, raise awareness of climate-sensitive urban design




EPFL Course Objectives: recognize & mitigate poor urban design


We'll investigate questions such as:


- How do urban canyons affect the environment?
- Which building configurations are most advantageous?
- Why is controlling surface reflectivity important in urban areas?
- How does evaporative cooling from trees impact the environment?
- Does enhancing street ventilation improve environmental conditions?
- What are the best strategies for designing thermally comfortable streets?
- How can the Urban Heat Island (UHI) effect be minimized?
- and many more!



Course Information

- Lectures (L): Mondays 15:15-17:00, room INJ 218
- Practice sessions (P): Mondays 17:15 18:00, room INJ 218
- Expected student activities:
 participate in lectures, practice sessions and group project
- Grading:
 - Quiz (30%), open book exam, individual assessment
 - Group project (70%), group assessment, peer-evaluation
- Formation of groups (4-5 ppl per group, 9 x 5 ppl + 2 x 4 ppl) by Week 3:
 - Option 1: Self-formation (you find people that you want to work with)
 - Option 2: Random assignment (we will assign people to each group randomly)

EPFL Course Schedule

Lectures (L) 15:15-17:00, practice sessions (P) 17:15-18:00, room INJ218

Week	Date	Time	ID	Topics	Responsible			
1	09.09	2 x 45'	L1	Course overview (content, evaluation, group	DK			
				project). Urban characteristics, Urban Heat Island				
				(UHI) effect.				
		1 x 45'	P1	Exercises based on materials in lecture L1	KL			
2	16.09			No class (holiday)				
3	23.09	2 x 45'	L2	Overview of physical parameters. Urban	DK, KL			
				environment and urban modeling.				
		1 x 45'	P2	Workshop on how to use the simulation tool ENVI-	KL			
				met (basic functions, geometry input, etc.)				
				Exercises based on materials in lecture L2 [HW]				
4	30.09	2 x 45'	L3	Heat Transfer: Conduction and radiation	DK			
		1 x 45'	Р3	Exercises based on materials in lecture L3	KL			
5	07.10	2 x 45'	L4	Heat Transfer: Convection and evaporation	DK			
		1 x 45'	P4	Exercises based on materials in lecture L4	KL			
6	14.10	90'	Q	Quiz (open book exam, based on lectures L1-L4)	DK, KL			
		1 x 45'	V	Case study site (EPFL Innovation park) visit,	DK, KL			
				overview of important urban features				
7	21.10			Fall Break (no classes)				

EPFL Course Schedule

Lectures (L) 15:15-17:00, practice sessions (P) 17:15-18:00, room INJ218

Lectures (L) 15:15-17:00, practice sessions (P) 17:15-18:00, room INJ218					
Week	Date	Time	ID	Topics	Responsible
8	28.10	2 x 45'	L5	Building-environment interaction: thermal,	DK
				aerodynamic, and hydrodynamic interaction	
		1 x 45'	P5	Group work—simulation practice based on L5:	KL
				building-environment interactions, workflow to create	
				and modify building geometry, and materials for building	
				walls and roofs. Data visualization for building surface	
				temperature and visualization for scenario comparison	
9	04.11	2 x 45'	L6	Ground-environment interaction: ground properties,	DK
				thermal, aerodynamic, and hydrodynamic interaction	
		1 x 45'	P6	Group work – simulation practice based on L6:	KL
				relevant parameters for ground materials, soil profile, and	
				data analysis regarding ground-environment interactions	
10	11.11	2 x 45'	L7	Water body - environment interaction: thermal,	DK
				aerodynamic, and hydrodynamic interaction	
		1 x 45'	P7	Group work – simulation practice based on L7:	KL
				workflow to create different water bodies and fountains	
				in ENVI-met and data analysis for water-environment	
				interactions	
11	18.11	2 x 45'	L8	Vegetation – environment interaction: characteristics	KL
				of vegetation, evapotranspiration, aero- and thermal	
				interaction	
		1 x 45'	P8	Group work - simulation practice based on L8: two	KL
				modes of vegetation models in ENVI-met and methods to	
				create new vegetation profiles, green walls and roofs, data	
				analysis for vegetation-environment interactions	

CIVIL-309 / LECTURE 01

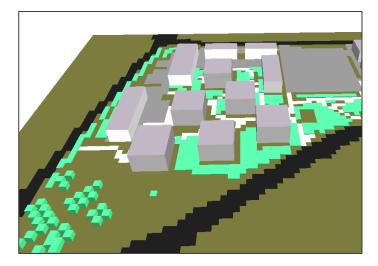
EPFL Course Schedule

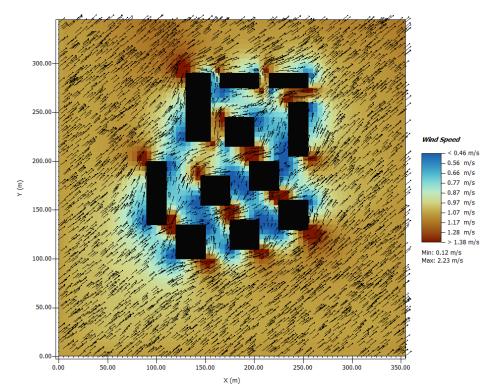
Lectures (L) 15:15-17:00, practice sessions (P) 17:15-18:00, room INJ218

Week	Date	Time	ID	Topics	Responsible
12	25.11	2 x 45'	L9	Human Outdoor Comfort: Parameters affecting human	DK
				comfort and comfort indices (UTCI, PET)	
		1 x 45'	P9	Group work – simulation practice based on L9:	KL
				methods to calculate thermal comfort indices from ENVI-	
				met simulation, dynamic thermal comfort simulation	
13	02.12	3 x 45'		Intermediate presentations of group projects	DK, KL
14	09.12	2 x 45'	L10	Climate-Sensitive Urban Design: complex interaction	KL
				of all urban elements and their effect on UHI and outdoor	
				environmental quality	
		1 x 45'	P10	Group work – simulation practice based on L10:	KL
				developing an integrated solution in ENVI-met for the	
				climate-sensitive urban design	
15	16.12	2 x 45'	L11	Urban Energy (renewable energy sources in cities).	DK
				Summary of the course.	
		1 x 45'	P11	Group work - finalizing the analysis and the report	KL
Submission of group projects and peer-evaluation by 23.12 (12:00)					

- Lecture slides will typically be available 1-2 days before the class meeting
- A file with exercises will be uploaded prior to the corresponding lecture
- A file with solutions will be uploaded after the exercise session

EPFL Course Information: Main References


- T.R. Oke, G.Mills, A. Christensen, J.A. Vooght, **Urban Climates**, Cambridge University Press
 - bebook (PDF file) is available <u>here</u>, 3 printed copies are available in the library
- S. Medved, Building Physics: Heat, Ventilation, Moisture, Light, Sound, Fire, and Urban Microclimate, Springer
 - be ebook (PDF file) is available here, 1 printed copy is available in the library
- A. Rodrigues, R.A. Sardinha, G. Pita, Fundamental Principles of Environmental Physics, Springer
 - be ebook (PDF file) is available here, no printed copy is available in the library
- N. Mason, P. Hughes, Introduction to Environmental Physics: Planet Earth,
 Life and Climate, Taylor & Francis
 - > ebook (PDF file) is available here, 1 printed copy is available in the library


EPFL Group Project: Aims and Objectives

• Aim: To understand the influence of urban elements on the urban microclimate, investigate their interactions, and explore possible urban overheating mitigation strategies for the given site.

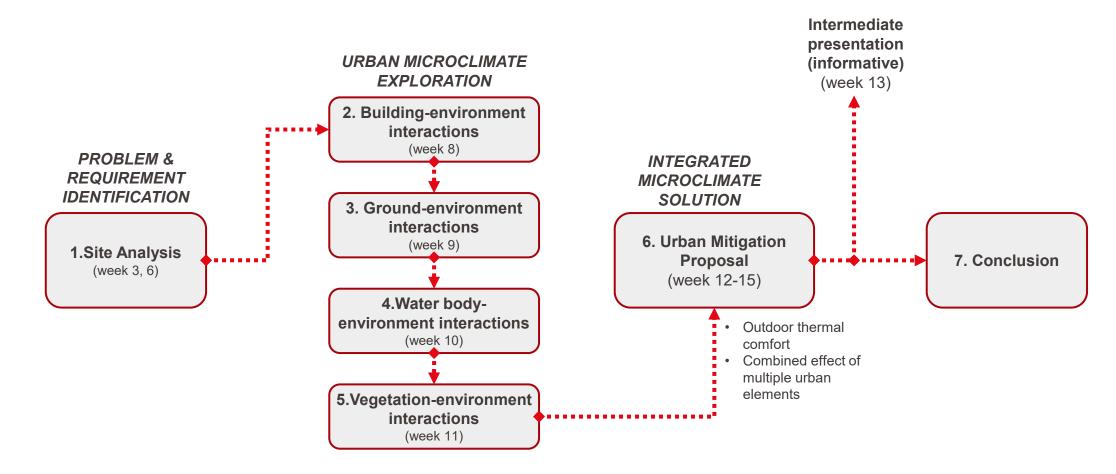
Objectives:

- Critically examine current site conditions (e.g., LCZ, material properties, urban morphological parameters, green elements, climate characteristics) in relation to the microclimate;
- 2. Identify, *illustrate* and *compare* **individual effects** of **buildings**, **ground cover**, **vegetation**, **water** on the urban microclimate;
- 3. Examine the combined effects of multiple urban elements on microclimate and propose optimised intervention solutions.

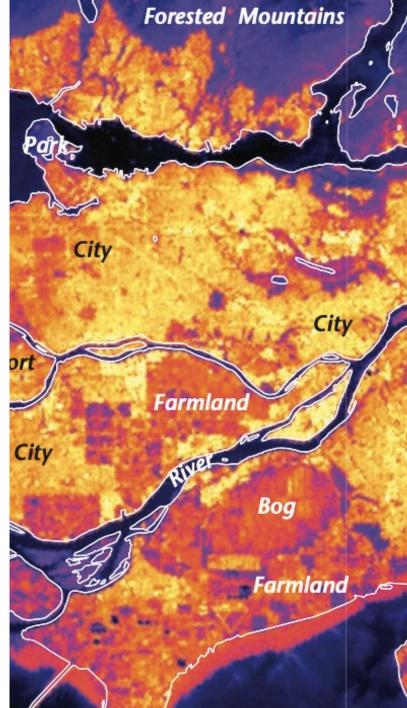
EPFL Group Project: Case study – Innovation Park

- Site of interest: Innovation Park of EPFL
- It includes:
 - 6 square buildings of the Innovation park
 - 5 other surrounding buildings
 - 1 large parking area
 - Roads and pedestrian pathways
 - Trees, grass and forest
- The surface of the area of interest covers about 11 hectares. The highest building is 22 m tall.
- The prevailing wind direction comes from the northeast and southwest with an average wind speed of $1.6 \, m/s$.
- The pavement materials are asphalt, grass, cement and stabilized sand.
- Vegetation is present with a forest at the South-West corner of the area and trees scattered between the buildings.

Group Project: Case study – Innovation Park


EPFL Group Project: Overview

- **Each simulation introduces** a **new element** or **changes** to **the existing configuration** (base case). The urban elements *should be introduced gradually* in order to see *their individual effect*.
- Critically analyze the improvement of previous simulation (cases 1 5) and propose integrated solution (case 6, you may introduce new elements different from cases 2-5).
- Holistic assessment of energy balance and microclimate condition (including outdoor thermal comfort).


Case Number	Base Case	Building Modification	Ground Modification	Water body Modification	Vegetation Modification	Integrated Solution
Potential modifications		Building geometry, wall and roof material, green wall and roof	Ground cover, permeable surface, cool pavement	Fountain, pool, pond (depth, size, shape of water body)	Vegetation type, configuration, green space size and shape	Combined effects, impact on thermal comfort
1	\checkmark					
2	\checkmark	\checkmark				
3	\checkmark		\checkmark			
4	\checkmark			\checkmark		
5	\checkmark				\checkmark	
6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

EPFL Group Project: Project structure

For more details, see project description and report structure template.

CONTENT:

- Introduction to the course
 - Content, schedule, grading
 - Group project overview
- Urban characteristics
 - Overview of properties
 - Local climate zones (LCZ)
 - Street canyon aspect ratio (λ_s)
 - Sky view factor (ψ_{sky})
- III. Urban Heat Island (UHI) effect
 - Energy balance for cities, anthropogenic heat
 - UHI definition, types, magnitude, dynamics
 - Consequences

CIVIL-309 / LECTURE 01

EPFL

Introduction: Cities

- 0.5% of the world surface is covered by urban areas.
 In Europe, it is 4.4% of the land that is covered by built-up areas (around twice the surface of Portugal).
- More than <u>half</u> of the world's population lives in urban areas (56%). In *Europe*, it is 75% of the population.
- Rapid urbanization: by 2050, urban population is expected to <u>double</u> and 7 of 10 people in the world will live in cities. Urban land growth is expected to at least double.
- Major challenges emerges from the speed and scale of urbanization:
 - Ecological (climate, resources, biodiversity, etc.)
 - Social (housing, transport, basic services, jobs, etc.)
- Cities use 2/3 of global energy use and account for more than 70% of greenhouse gas emissions.

Cities inhabitants, January 2017:

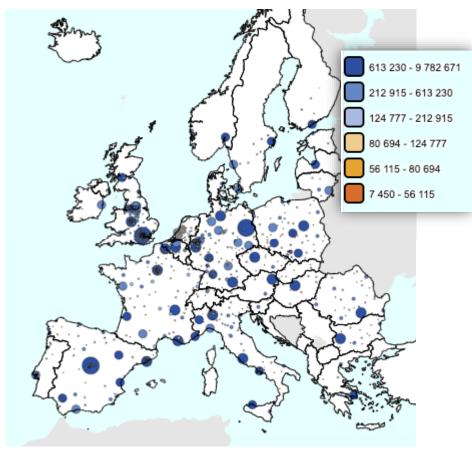
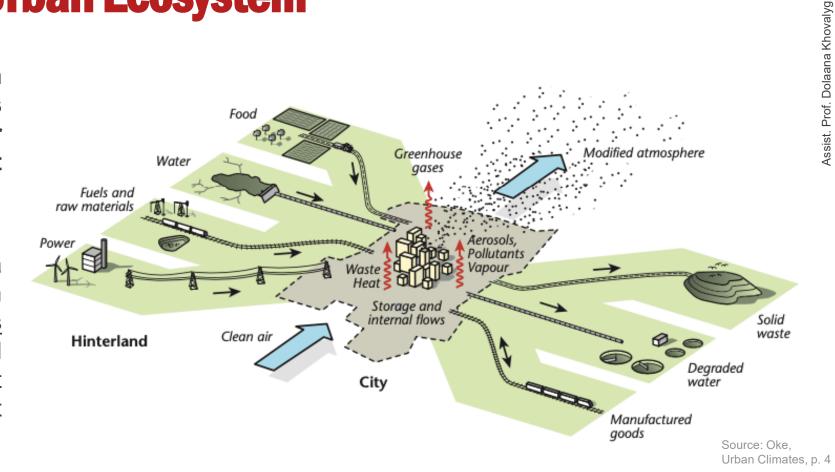
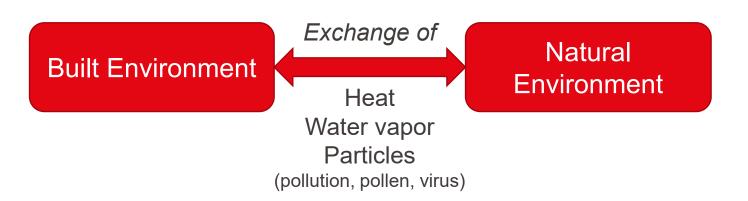
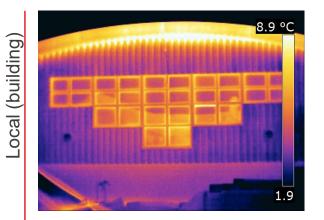



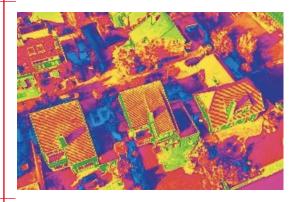
Image from websource

Introduction: Urban Ecosystem

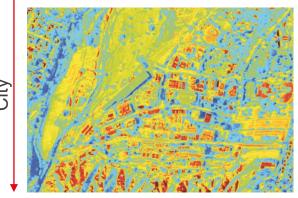
- City: integrated open system of living things interacting with their physical environment (Douglas, 1983).
- Urban metabolism: analogy of the city to a single living organism which imports and exports energy and mass and transforms materials. It cannot exist without support from the outside.


Isolated System No exchanges Closed
System
Energy exchange

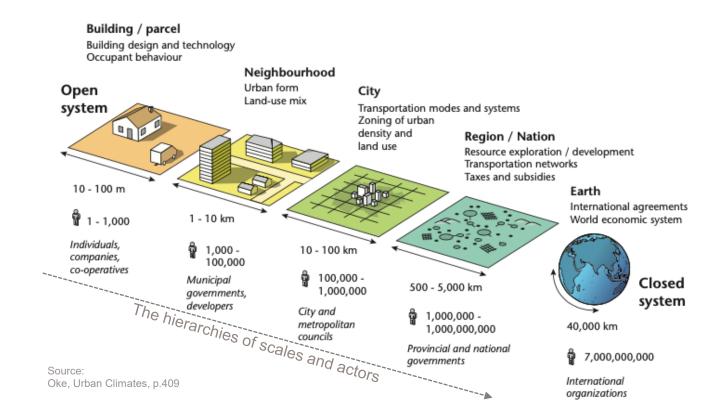

Open
System
Energy and
material exchange


Non-equilibrium thermodynamics

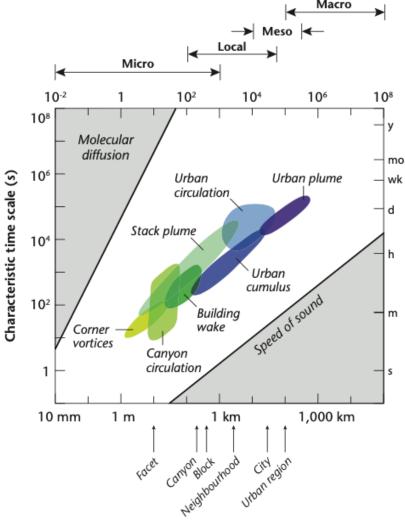
EPFL Interaction between the Built and Natural environments


- The city environment and its microclimate defers from the one of its surroundings:
 - Accumulation of solar energy that form heat islands
 - Decrease of the <u>local wind speed</u>
 - Decrease solar irradiation and hours of sunshine due to pollution
 - More intense flooding with faster run-off
- The wind spreads these urban effects to the countryside
- Importance of the scales (local, regional, global): these urban effects do not occur the same way at different scales.

Neighbourhood



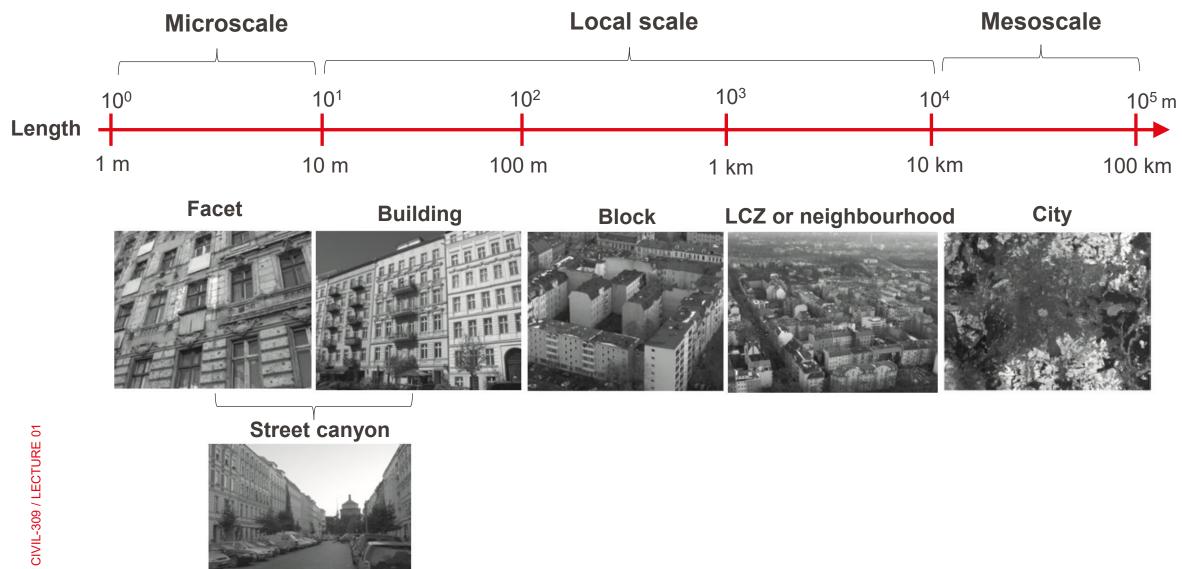
EPH


CIVIL-309 / LECTURE 01

Urban characteristics: Urban scales

- Each space scale faces different physical phenomena of different times scales. Space and time scale are correlated.
- Each climate feature combines to form larger ones up to the scale of the whole urban boundary layer.
- Each space scale is linked to different urban objects and different actors.

Time and horizontal space scales of selected urban dynamics and wind phenomena:



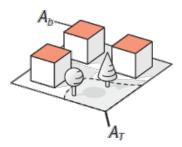
Characteristic horizontal distance scale (m)

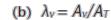
Source: Oke, Urban Climates, p. 29

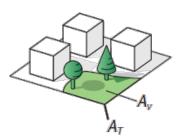
Assist. Prof. Dolaana Khovalyg

EPFL Urban characteristics: Urban scales

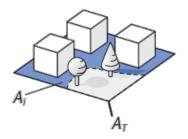
CIVIL-309 / LECTURE 01

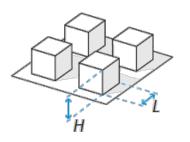

Urban characteristics: Overview of urban properties


- Cities are characterized by the fraction of their surface allocated to buildings, vegetation or pavement and by the geometry of their elements.
- Main urban properties: fabric (materials), surface cover, and urban structure
- Parameters describing urban cover and structure:
 - o Building plan area fraction (λ_b)
 - Vegetated plan area fraction (λ_v)
 - o Impervious plan area fraction (λ_i)
 - Canyon aspect ratio (λ_s)
 - Floor space ratio (λ_{floor})
 - o Complete surface ratio (λ_c)
 - Frontal aspect ratio (λ_f)

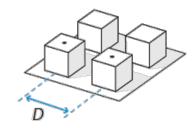

Parameters describing urban cover, length scales and urban structure:

Urban cover

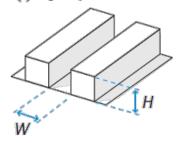

(a) $\lambda_b = A_b/A_T$



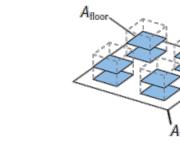
(c) $\lambda_i = A_i/A_T$



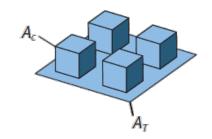
Length scales


(d) Building dimensions

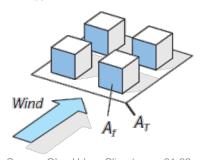
(e) Building spacing



(f)
$$\lambda_s = H/W$$



Urban structure

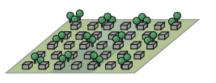

(g) $\lambda_{\text{floor}} = A_{\text{floor}}/A_T$

(h) $\lambda_c = A_c/A_T$

(i) $\lambda_f = A_f/A_T$

EPFL

Urban characteristics: Local Climate Zones (LCZ)


LCZ - categorization of the urban landscape types

per their ability to modify local surface climates

LCZ 2 Compact midrise

highrise

LCZ 1

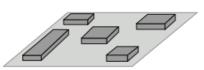
LCZ 7 Lightweight lowrise

LCZ D Low plants

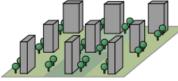
LCZ A

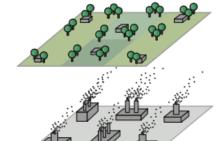
LCZ B Scattered

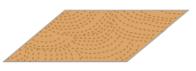
trees

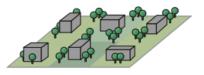

Dense trees

LCZ 3 Compact lowrise

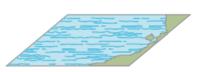

LCZ8 Large **lowrise**




LCZ 4 Open highrise

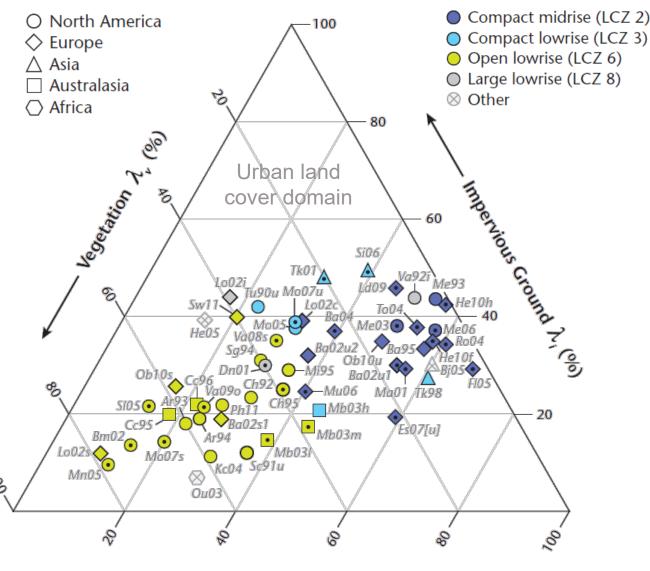

LCZ 9 Sparsely built

LCZ F Bare soil or sand

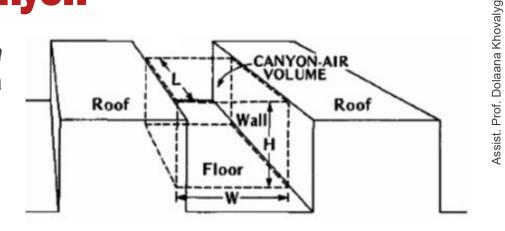


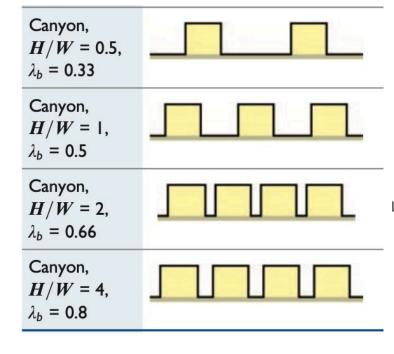
LCZ 5 Open midrise

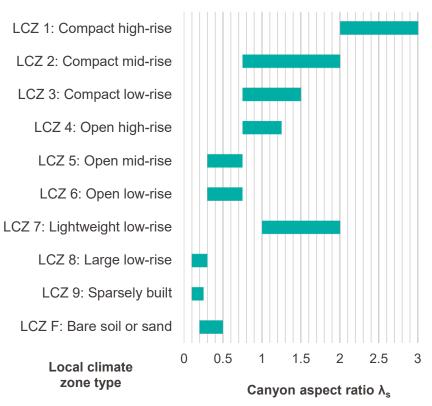
LCZ 10 Heavy industry


LCZ G Water

Urban characteristics: Local Climate Zones (LCZ)

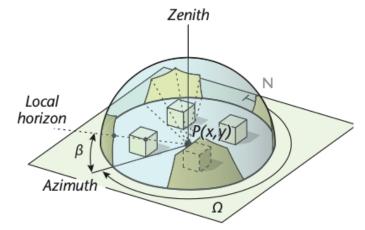

- Local climate zone LCZ: categorization of the urban landscape types per their ability to modify local surface climates.
- LCZ type indicates impermeability, roughness, thermal behavior, use of energy and water.
- Other types of categorizations:
 - land use classes (expresses urban function, irrelevant for physics),
 - climatopes (no explicit description of the surface, define areas with similar microclimatic characteristics, relevant for urban planning).

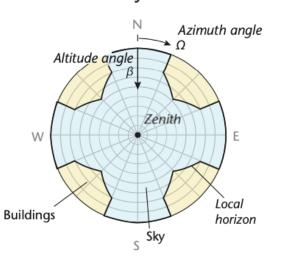

Urban characteristics: Street canyon


- Urban canyon or street canyon: structure formed by a street with its three facets: canyon floor (usually a road), and two sides (the walls of flanking buildings)
- Canyon aspect ratio λ_s : the ratio between the **height** (H) and width (W) of an urban canyon

$$\lambda_s = \frac{H}{W} \quad (1-1)$$

Assessment of the canyon aspect ratio is important for understanding radiation access, shade and trapping, wind effects, thermal comfort and dispersion of pollutants.





Assist. Prof. Dolaana Khovalyg

Urban characteristics: Sky view factor

- Sky view factor ψ_{sky} : fraction of the radiative flux leaving the surface at a given point that reaches the atmosphere above the urban canopy.
- $\psi_{sky}=\mathbf{1}$ for a point at the top of a roof with *no horizon screening* by other buildings or hills. Open areas have high sky view factor whereas *obstructed* configurations have *a low* sky view factor.

LCZ 1: Compact high-rise LCZ 2: Compact mid-rise LCZ 3: Compact low-rise LCZ 4: Open high-rise LCZ 5: Open mid-rise LCZ 6: Open low-rise LCZ 7: Lightweight low-rise LCZ 8: Large low-rise LCZ 9: Sparsely built LCZ F: Bare soil or sand

Local climate

zone type

Sky view factor ψsky

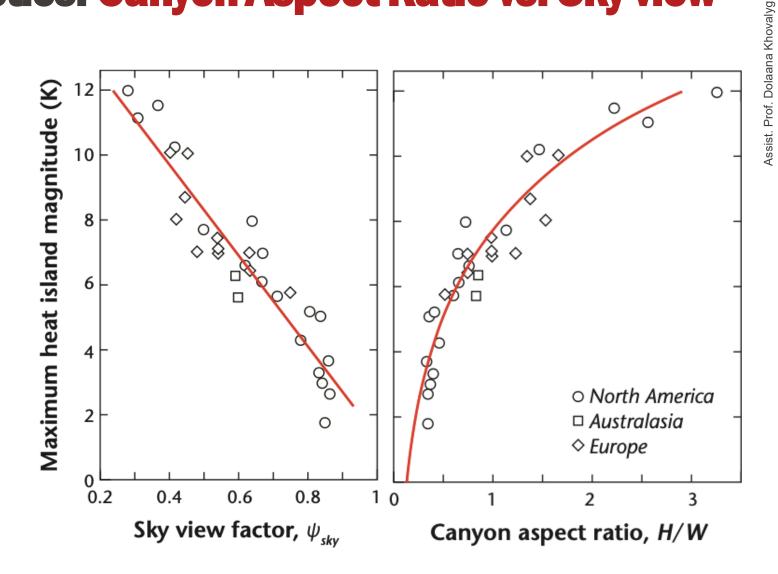
Source: Oke, Urban Climates, p. 23

Parking lot:

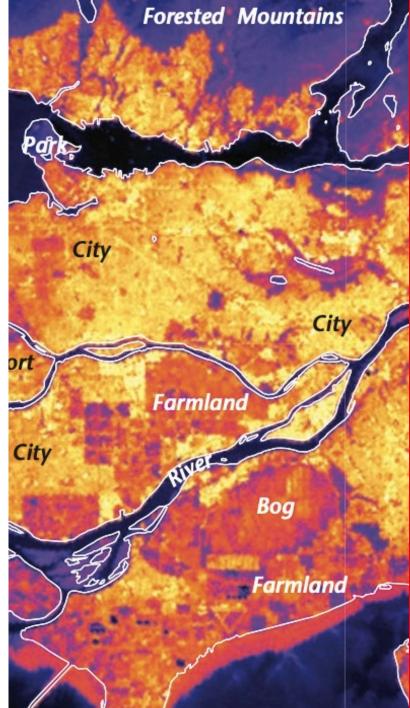
CIVIL-309 / LECTURE 01

Park:

Tree-lined street:

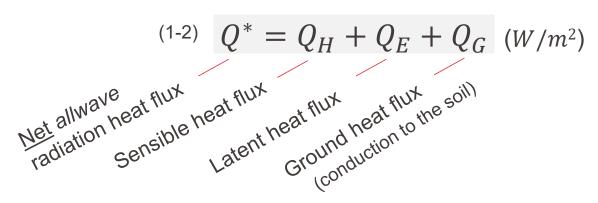

 $\psi_{\rm sky} = 0.21$

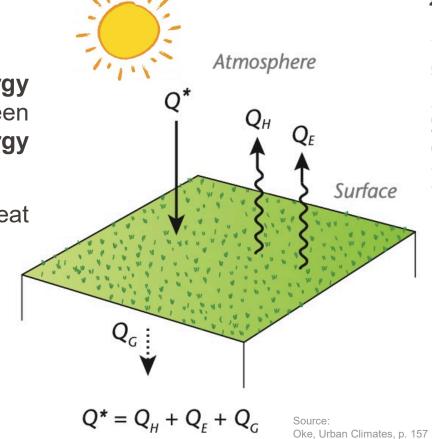
 $\psi_{\rm skv} = 0.48$


EPFL

Urban characteristics: Canyon Aspect Ratio vs. Sky view

- The sky view factor ψ_{sky} and the canyon aspect ratio λ_s are correlated to the urban heat island effect (valid for all types and sizes of cities)
- Sky view factor ψ_{sky} and the canyon aspect ratio λ_s are universal indicators of the thermal behavior of urban areas (even though these characteristics are less precise than actual *physical properties* describing the physical behavior of urban areas)


CONTENT:


- Introduction to the course
 - Content, schedule, grading
 - Group project overview
- Urban characteristics
 - Overview of properties
 - Local climate zones (LCZ)
 - Street canyon aspect ratio (λ_s)
 - Sky view factor (ψ_{sky})
- Urban Heat Island (UHI) effect
 - Energy balance for cities, anthropogenic heat
 - UHI definition, types, magnitude, dynamics
 - Consequences

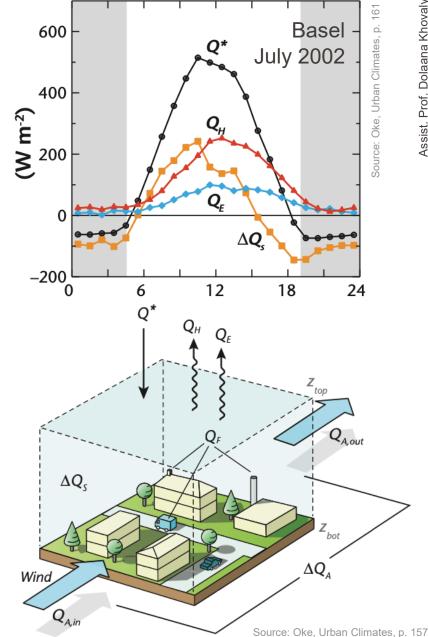
EPFL Energy Balance in Rural areas

The surface energy balance (SEB) - the net result of energy exchanges by radiation, convection and conduction between a surface element and the atmosphere. Due to energy conservation, the surface should always be at balance.

SEB formulation for a rural area (no built elements, no heat sources):

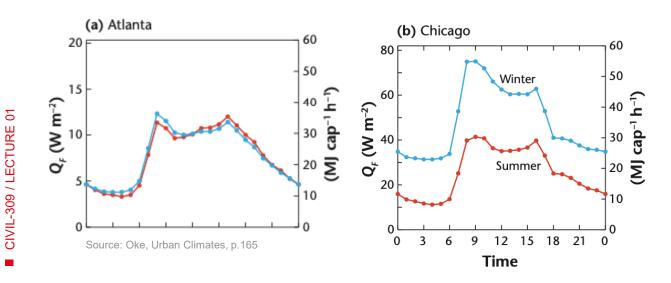
* the balance in Eqn. (1-2) simplified by considering only vertical fluxes over the surface

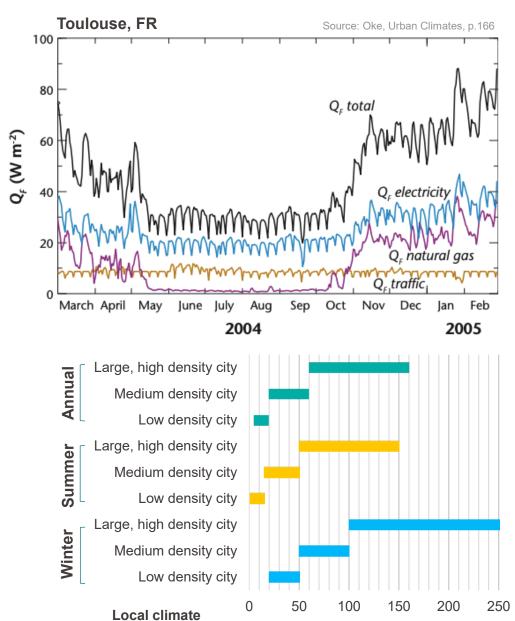
- The daily and seasonal pattern of the SEB is set by the radiation heat flux Q^* received from the Sun:
 - During day, $Q^* > 0$ and energy goes into the soil as sensible heat or into the air through convection.
 - During night, $Q^* < 0$ and energy is released from surfaces.


Note that in Oke's book "Urban Climates" the net heat flux in units of W/m^2 is labeled as [Q] (capitalized), while in other sources it could be labeled as $[\dot{q}]$ (e.g., in Medved's book)

EPFL Energy Balance in Urban areas

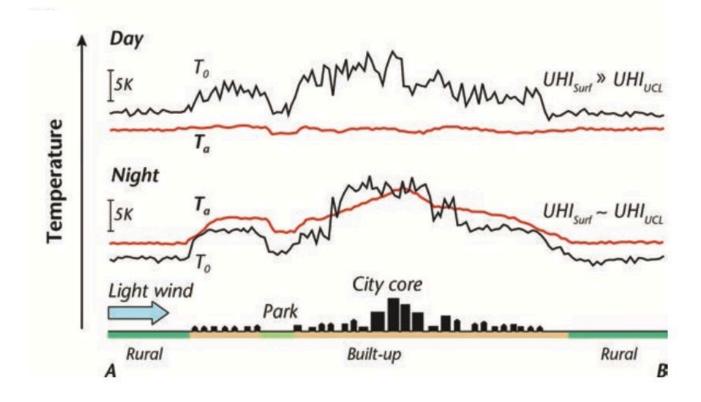
- Urban areas differ significantly from rural areas by their surface geometry and properties. It leads to a very different dynamic of physical processes.
- The energy balance of an urban element is made of a control volume that contains sources and sinks of energy.
 - Although the urban element is a combination of surfaces, the **energy balance** is *not only the sum of these surfaces* as these surfaces also interact with each other.
 - o Contrary to the surface energy balance (SEB), the masses of the volume elements are considered.


(1-3)
$$Q^* + Q_F = Q_H + Q_E + \Delta Q_S + \Delta Q_A$$
 (W/m^2)


Net radiation sensible heat Latentheat Stored heat Anthopogenic heat Latentheat Stored heat Anthopogenic heat Latentheat Stored heat Anthopogenic heat lead to the latentheat Stored heat Anthopogenic heat lead to the latentheat stored heat latentheat latentheat stored heat latentheat la

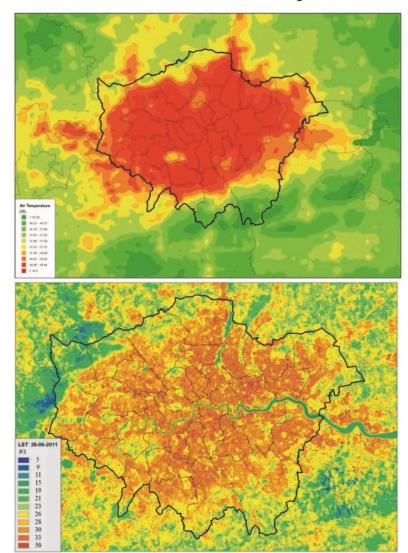
EPFL Anthropogenic Heat

- Anthropogenic heat Q_F (W/m^2): heat released from human activities to the atmosphere
- Main sources of anthropogenic heat:
 - Human and animal metabolisms
 - Use of electric devices
 - Combustion of fuels
- Anthropogenic heat is higher during the day. It varies
 with the season with peaks of heat flux during winter
 and summer if heating and cooling are used.

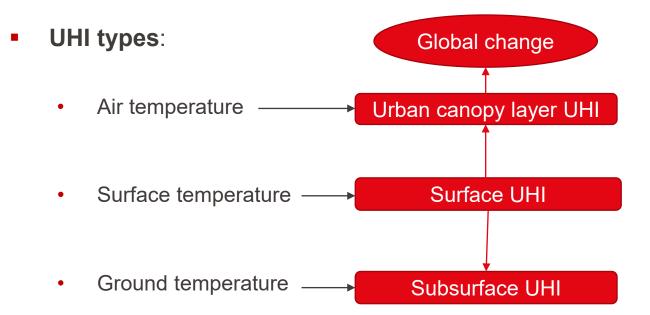


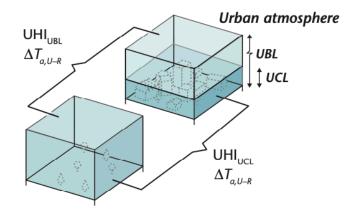
zone type

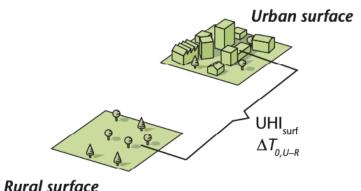
Anthropogenic heat Q_F (W/m²)

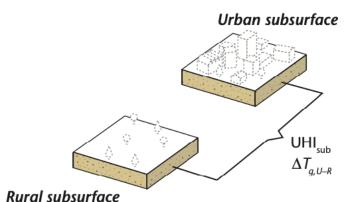

EPFL Urban Heat Island (UHI) effect

 Urban heat island UHI phenomenon: urban areas experience significantly higher temperatures than their surrounding rural areas due to unintentional climate alterations caused by human activities.

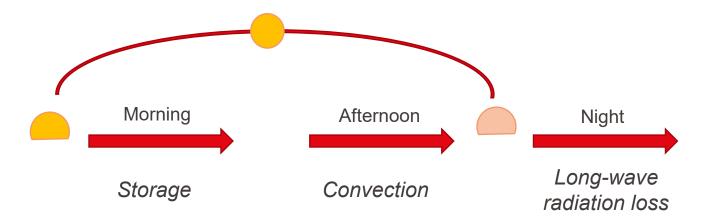

Source: Oke, Urban Climates, p. 200


Surface and air UHI for the city of London

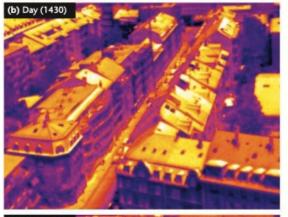



EPFL Urban Heat Island (UHI): Types

- Different UHI exist, they are characterized by their scales, their physical processes. They have different temporal and spatial dynamics.
- The different UHI require different monitoring schemes and models for simulation
- They interact with each other resulting in a global effect



CIVIL-309 / LECTURE 01


EPFL Urban Heat Island (UHI): **Dynamics**

- Temporal and spatial variation of each type of UHI: UHI varies daily, with season and with weather.
- Diurnal variation of UHI: UHI is primarily driven by solar radiation.
 During day, heat is absorbed by urban surfaces. During night, urban surfaces are cooled down via convection and radiation loss.

- Weather-driven variation of UHI: it decreases with wind speed and cloud cover as less sun radiation reaches the urban surface.
- Seasonality of UHI: it is higher during <u>summer</u> and lower during winter.

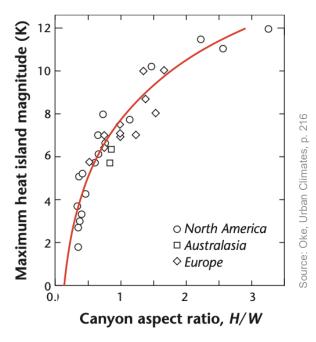
EPFL Urban Heat Island (UHI): Magnitude

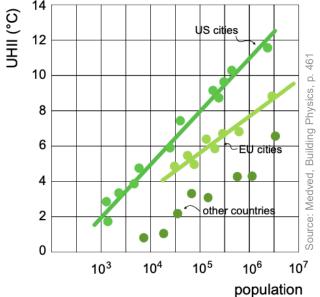
■ **UHI magnitude** or **intensity UHI**_{mag} (K or °C) - difference between urban and rural temperatures:

$$UHI_{mag} = \Delta T_{U-R} = T_U - T_R \quad (1-4)$$

The maximum <u>night</u> UHI intensity (with respect to air temperature T_{air}) is correlated with the average canyon aspect ratio:

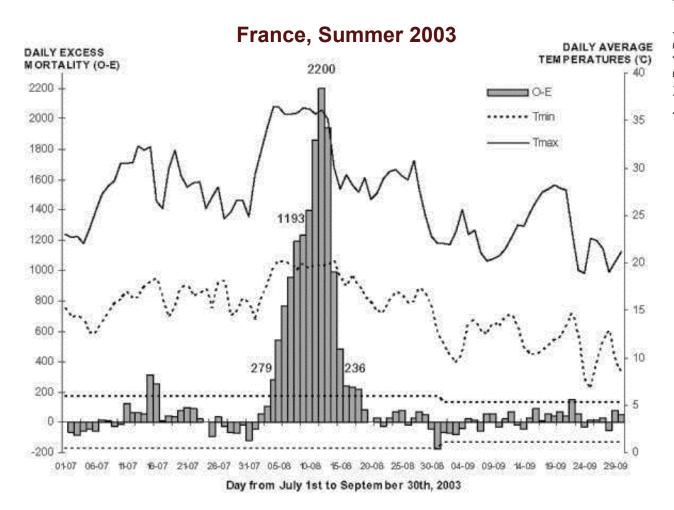
$$UHI_{mag} = 7.54 + 3.97 \ln \frac{H}{W}$$
 (1-5)


 $\boldsymbol{H}\left(m\right)$ – average height of the streets, $\boldsymbol{W}\left(m\right)$ – average width of the streets


• Empirical expression of the maximum <u>night</u> UHI intensity (with respect to T_{air}) as a function of **population**:

North America:
$$UHI_{mag} = 2.96 \cdot \log(P) - 6.41$$
 (1-6)

Europe:
$$UHI_{mag} = 2.01 \cdot \log(P) - 4.06$$
 (1-7)

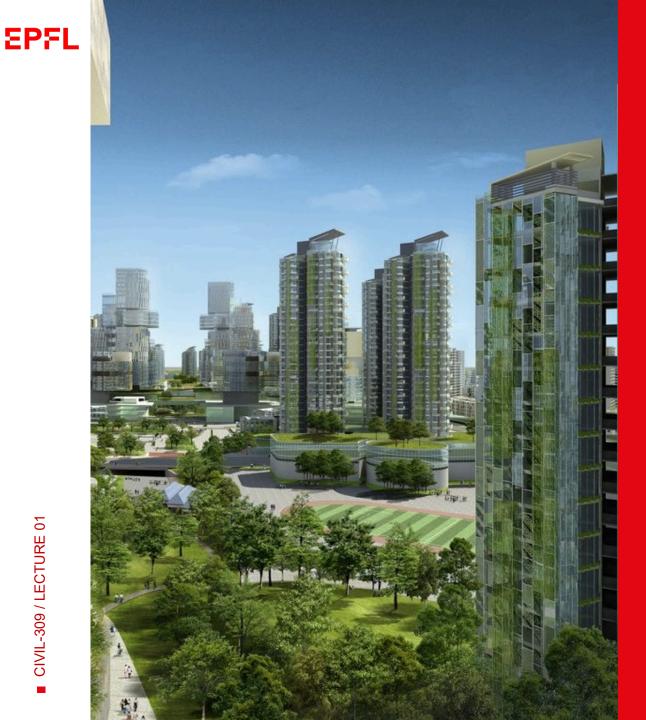

P (nb inhabitants) - city population

EPFL Urban Heat Island (UHI): Consequences

- Increasing urban temperature records and temperature difference between urban and rural areas
- 2. Lower space heating cost but higher space cooling requirements
- 3. Increased heat stress on city residents in summer
- 4. Disruption in biological rhythm and threat to the existence of plants and animals
- 5. Increased rate of chemical reactions leading to smog and pollution
- Contribution to and enhanced by global climate change

Source: http://europepmc.org/article/PMC/1950160

Name urban elements lead that can exacerbated UHI effect of the district shown in the picture.



EPFL Urban Heat Island (UHI) effect

Main causes of the UHI:

- **1. Decreased long-wave radiation loss** to the sky due to the *increase in blockage*
- 2. Increased absorption of short-wave radiation due to increased reflection and use of low-albedo materials
- **3.** Increased absorption of long-wave radiation due to air pollution
- **4. Increased sensible heat storage** due to the use of materials with *high thermal transmittance* (e.g., concrete, asphalt, brick)
- Decreased evapotranspiration due to the reduced presence of soil, water bodies, and vegetation
- **6.** Increased anthropogenic heat production due to buildings and heavy traffic
- **7.** Decreased convective heat transport due to a reduction in wind speed

Thank you for your attention

Assist. Prof. Dolaana Khovalyg dolaana.khovalyg@epfl.ch